Histone H4 Lysine 20 methylation: key player in epigenetic regulation of genomic integrity
نویسندگان
چکیده
Maintenance of genomic integrity is essential to ensure normal organismal development and to prevent diseases such as cancer. Nuclear DNA is packaged into chromatin, and thus genome maintenance can be influenced by distinct chromatin environments. In particular, post-translational modifications of histones have emerged as key regulators of genomic integrity. Intense research during the past few years has revealed histone H4 lysine 20 methylation (H4K20me) as critically important for the biological processes that ensure genome integrity, such as DNA damage repair, DNA replication and chromatin compaction. The distinct H4K20 methylation states are mediated by SET8/PR-Set7 that catalyses monomethylation of H4K20, whereas SUV4-20H1 and SUV4-20H2 enzymes mediate further H4K20 methylation to H4K20me2 and H4K20me3. Disruption of these H4K20-specific histone methyltransferases leads to genomic instability, demonstrating the important functions of H4K20 methylation in genome maintenance. In this review, we explain molecular mechanisms underlying these defects and discuss novel ideas for furthering our understanding of genome maintenance in higher eukaryotes.
منابع مشابه
Methylation of histone H4 lysine 20 by PR-Set7 ensures the integrity of late replicating sequence domains in Drosophila
The methylation state of lysine 20 on histone H4 (H4K20) has been linked to chromatin compaction, transcription, DNA repair and DNA replication. Monomethylation of H4K20 (H4K20me1) is mediated by the cell cycle-regulated histone methyltransferase PR-Set7. PR-Set7 depletion in mammalian cells results in defective S phase progression and the accumulation of DNA damage, which has been partially at...
متن کاملA novel route to product specificity in the Suv4-20 family of histone H4K20 methyltransferases
The delivery of site-specific post-translational modifications to histones generates an epigenetic regulatory network that directs fundamental DNA-mediated processes and governs key stages in development. Methylation of histone H4 lysine-20 has been implicated in DNA repair, transcriptional silencing, genomic stability and regulation of replication. We present the structure of the histone H4K20...
متن کاملDegrees make all the difference: the multifunctionality of histone H4 lysine 20 methylation.
Residue and degree-specific methylation of histone lysines along with other epigenetic modifications organizes chromatin into distinct domains and regulates almost every aspect of DNA metabolism. Identification of histone methyltransferases and demethylases, as well as proteins that recognize methylated lysines, has clarified the role of each methylation event in regulating different biological...
متن کاملO-29: Aberrant Methylation of Lysine 9 on Histone 3 in PII Promoter of CYP19A1 Gene in Women with Endometriosis
Background Cytochrome aromatase p450, encoded by the gene CYP19A1, is a key enzyme for estrogen biosynthesis. Among the multiple promoters of CYP19A1, the proximal promoter PII is the most active ones in ovary and endometrium. Endometriosis is a chronic estrogen dependent gynecological condition characterized by the presence of ectopic glands and stroma outside the uterine cavity. Recently, evi...
متن کاملRole of hMOF-dependent histone H4 lysine 16 acetylation in the maintenance of TMS1/ASC gene activity.
Epigenetic silencing of tumor suppressor genes in human cancers is associated with aberrant methylation of promoter region CpG islands and local alterations in histone modifications. However, the mechanisms that drive these events remain unclear. Here, we establish an important role for histone H4 lysine 16 acetylation (H4K16Ac) and the histone acetyltransferase hMOF in the regulation of TMS1/A...
متن کامل